도서상세보기

도서명 코딩 없이 배우는 데이터 분석 : AI 시대의 필수 역량
저자 황보현우, 한노아
출판사 성안북스
출판일 2024-11-20
정가 35,000원
ISBN 9788970674582
수량
추천의 글
머리말

PART 1. 왜 코딩 없이 배우는 데이터 과학인가?
_Chapter 1. 인공지능의 무서운 발전 속도
_Chapter 2. ‘도구’에서 ‘분석’으로 패러다임의 전환
_Chapter 3. 무엇을 준비해야 하나?
_Chapter 4. 코딩 없이 데이터 과학을 배우려면
_Chapter 5. 코딩이 필요 없는 데이터 과학 도구
_Chapter 6. SoDA를 사용하는 방법

PART 2. 추정과 검정
_Chapter 1. 모집단과 표본
_Chapter 2. 확률 이론
_Chapter 3. 확률 분포
_Chapter 4. 표본 분포
_Chapter 5. 추정과 검정


PART 3. 관계 분석
_Chapter 1. 범주와 수치 변수의 관계 Ⅰ
_Chapter 2. 범주와 수치 변수의 관계 Ⅱ
_Chapter 3. 수치형 변수의 관계
_Chapter 4. 범수형 변수의 관계

PART 4. 회귀
_Chapter 1. 회귀란?
_Chapter 2. 단순 선형 회귀
_Chapter 3. 다중 선형 회귀
_Chapter 4. 회귀 모형의 가정 진단
_Chapter 5. 모델 선택
_Chapter 6. 예측 회귀

PART 5. 분류
_Chapter 1. 분류란?
_Chapter 2. 로지스틱 회귀
_Chapter 3. 판별 분석
_Chapter 4. 분류 모형의 평가

PART 6. 차원 축소
_Chapter 1. 차원 축소란?
_Chapter 2. 주성분 분석
_Chapter 3. 요인 분석

PART 7. 그룹화
_Chapter 1. 그룹화란?
_Chapter 2. 군집 분석
_Chapter 3. 계층형 군집
_Chapter 4. k-평균 군집화

맺음말
데이터 과학의 프레임워크부터
데이터 분석의 주요 방법론의 이론 학습과 예제 실습까지
모두 수록한 단 한 권의 데이터 분석 바이블!

이 책을 통해 데이터 과학의 프레임워크를 이해하고, 지도 학습과 비지도 학습을 망라한 데이터 분석의 주요 방법론들을 학습할 수 있다. 구체적으로 통계 학습의 기초가 되는 추정과 검정, 변수 간 관계를 익힐 수 있으며, 회귀, 분류, 차원 축소, 그룹화의 주요 방법론에 대한 이론 학습과 예제 실습까지 다루고 있다.

이를 통해 독자 여러분은 인공지능 시대에 적합한 데이터 분석가가 될 수 있다. 이 책을 정독하고 나면 어떤 인공지능 도구를 사용하더라도 데이터 분석을 위한 적합한 지시를 내릴 수 있으며, 그 결과물을 해석할 수 있게 된다. 또한, 실무 경험을 통해 제조, 유통, 금융, 헬스케어 등 해당 산업분야에 대한 노하우를 더한다면 완벽한 데이터 과학자로 성장할 수 있다.