옮긴이 머리말 xiii
베타리더 후기 xiv
머리말 xvi
감사의 말 xviii
이 책에 대하여 xix
표지에 대하여 xxiii
PART I 시간은 그 누구도 기다려주지 않는다
CHAPTER 1 시계열 예측의 이해 3
1.1 시계열 소개 4
__1.1.1 시계열의 구성요소 5
1.2 시계열 예측에 대한 조감도 8
__1.2.1 목적 설정하기 10 / 1.2.2 목적을 달성하기 위해 무엇을 예측해야 하는지 결정하기 10 / 1.2.3 예측할 기간 설정하기 10 / 1.2.4 데이터 수집하기 10 / 1.2.5 예측 모델 개발하기 11 / 1.2.6 상용 환경에 배포하기 12 / 1.2.7 모니터링하기 12 / 1.2.8 새로운 데이터 수집하기 12
1.3 시계열 예측이 다른 회귀 작업들과 다른 점 13
__1.3.1 시계열에는 순서가 있다 13 / 1.3.2 시계열에 특징이 없는 경우가 있다 14
1.4 다음 단계 14
요약 15
CHAPTER 2 단순하게 미래 예측하기 16
2.1 베이스라인 모델 정의하기 18
2.2 과거 평균으로 예측하기 19
__2.2.1 베이스라인 구현을 위한 설정 20 / 2.2.2 과거 평균 기반 베이스라인 모델 구현하기 22
2.3 작년의 평균으로 예측하기 27
2.4 마지막으로 측정된 값으로 예측하기 29
2.5 단순한 계절적 예측 구현하기 31
2.6 다음 단계 32
요약 33
CHAPTER 3 확률보행 따라가보기 35
3.1 확률보행 프로세스 37
__3.1.1 확률보행 프로세스 시뮬레이션하기 37
3.2 확률보행 식별하기 40
__3.2.1 정상성 42 / 3.2.2 정상성 테스트하기 44 / 3.2.3 자기상관함수 48 / 3.2.4 모든 것을 종합하기 48 / 3.2.5 GOOGL은 확률보행인가? 52
3.3 확률보행 예측하기 55
__3.3.1 긴 기간 예측하기 55 / 3.3.2 다음 시간 단계 예측하기 61
3
R에서 파이썬으로 전환하는 시계열 데이터 과학
전통적인 통계 분석에서 R은 훌륭한 언어지만, 만능에 가까운 파이썬으로 대체할 수 있다면 통계 분석은 물론 딥러닝 모델과 자동화된 예측 라이브러리까지 다양한 활용이 가능해진다. 마르쿠 페이셰이루는 시계열 예측을 공부하며 R로 되어 있는 많은 코드를 파이썬으로 변환하며 학습하였고, 파이썬 기반 시계열 예측에 대한 종합적인 참고 자료로 만들고자 이 책을 썼다.
이 책은 파이썬을 이용하여 이동평균, 자기회귀, SARIMAX 등 통계적 모델을 기반으로 한 예측 분석부터, LSTM, CNN 아키텍처 등 딥러닝 기반 예측, Prophet, SARIMAX 모델을 이용한 자동화된 예측 라이브러리까지 다루고 있다. 특히 주제별로 적절한 예시를 통해 데이터 수집부터 모델을 구축하고 예측값을 찾는 과정을 차근차근 보여준다. 독자는 실습을 따라 하며 예측값과 실젯값이 점점 가까워지는 경험을 하게 될 것이다.
데이터 과학에서 시간의 변화는 무시할 수 없는 중요한 요소다. 구글 주가 동향, 데이터 센터의 대역폭 사용량 예측, 월간 항공 승객 수 예측, 항당뇨제 처방량 예측, 가정의 전력 소비량 예측 등 다양한 실무 예제를 통해 시계열 예측 분석 기법을 차근차근 배워보자. 이 책을 마치고 나면 당장 실무에서 사용할 수 있는 다양한 시계열 데이터 과학 기술을 익힐 수 있을 것이다.
주요 내용
● 시계열 데이터의 개념과 기본 모델 개발
● 이동평균, 자기회귀, SARIMAX 등 통계적 모델 기반 예측
● LSTM, CNN 아키텍처 등 딥러닝 기반 예측
● Prophet, SARIMAX 모델을 이용한 자동화된 예측 라이브러리