추천의 글 ix
머리말 xi
이 책에 대하여 xiii
CHAPTER 1 금융과 핀테크에서의 AI 1
1.1 금융이란 무엇인가? 3
1.2 금융을 다루는 기관들 4
__1.2.1 은행(제1금융기관 4
__1.2.2 비은행예금취급기관(제2금융기관 4
__1.2.3 보험회사 5
__1.2.4 금융투자업자 5
__1.2.5 기타금융기관(카드사 포함 5
__1.2.6 공적금융기관 5
__1.2.7 핀테크 6
1.3 AI와 그 주변 용어들 6
1.4 금융과 AI 8
__1.4.1 국내 금융 분야 AI 시장 규모 9
__1.4.2 금융 산업에 대한 AI의 영향력이 큰 이유 10
__1.4.3 금융 AI 트렌드 13
__1.4.4 금융 서비스에서 AI의 핵심 가치 15
__1.4.5 금융 서비스 분야에서 AI의 도입 장벽 16
1.5 금융 AI의 주요 활용 분야 18
__1.5.1 신용 평가에서 AI와 대체 데이터의 활용 19
__1.5.2 사기 탐지 및 방지: 디지털 시대의 필수 요소 21
__1.5.3 고객 서비스 26
__1.5.4 투자와 트레이딩 28
__1.5.5 준법 감시와 규제 29
__1.5.6 프로세스 자동화 31
1.6 금융 AI 핵심 문제 정의 33
1.7 금융 AI 전망과 도전적 과제들 35
__1.7.1 양질의 데이터 확보 36
__1.7.2 규제 및 보안 이슈 37
__1.7.3 기존 레거시 시스템의 한계 37
__1.7.4 윤리적 고려의 중요성 38
1.8 마무리 39
CHAPTER 2 금융 투자 영역에서의 AI 41
2.1 대표적인 금융 투자 방식 43
__2.1.1 퀀트의 기원과 AI 시대 44
__2.1.2 성장하는 알고리즘 트레이딩 시장 46
2.2 금융 투자 영역에서 AI가 각광받는 이유 46
2.3 AI를 접목한 투자의 장점과 단점 47
2.4 금융 투자 데이터 유형 49
2.5 데이터 소스
다양한 사례와 데이터로 배우는 금융 AI의 모든 것
금융 분야는 수많은 데이터와 복잡한 거래 패턴으로 이루어져 있다. 최근 몇 년 동안 AI가 급속도로 발전하면서 금융 서비스 방식을 혁신한 것은 물론 사기 탐지, 리스크 관리 등 금융 분야의 복잡함을 풀어내는 결정적인 역할을 하고 있다. AI 기술을 효과적으로 활용하려면 금융 도메인 지식과 AI 기술에 모두 능숙해야 한다. 단순히 기술적인 지식이 아닌 실제 금융 현장의 문제점과 필요성을 파악하고, 이를 AI 기술로 해결하는 능력이 필요하다.
총 6장으로 구성된 이 책은 다양한 데이터를 통해 금융계에서의 AI 활용법을 알아보고 전략을 제시하며, 금융 도메인 전문성을 갖춘 데이터 과학자가 되기 위한 핵심적인 내용을 체계적으로 담았다. 1장에서는 금융 분야에서의 AI 중요성과 그 영향력을 조명하고, AI 기술이 금융 서비스와 거래 방식에 미치는 긍정적인 변화와 가능성을 살펴본다. 2장에서는 금융 투자 영역에서의 AI 활용법과 다양한 투자 전략에서 AI가 어떻게 핵심 역할을 하는지를 다룬 후 파이썬 주요 라이브러리로 머신러닝/딥러닝을 활용한 퀀트 투자 전략을 알아본다.
3장에서는 머신러닝 기반 신용 평가의 중요성과 함께 최신 신용 평가 방법론을 자세히 알아본 후 Optbinning과 TOAD 라이브러리를 활용한 신용 평가 모델 개발 방법을 실습해본다. 4장에서는 AI 기반의 사기 탐지 방법론과 그 효과에 대해 상세하게 설명한다. 지도학습/비지도학습을 활용한 신용카드 사기 탐지 모델 사례를 살펴본 후 파이썬 라이브러리인 NetworkX로 그래프 데이터를 직접 분석한다.
5장에서는 AI 프로덕트의 전반적인 관리 방법을 탐구한다. 데이터/머신러닝 파이프라인의 구축부터 배포, 모니터링, 성과 측정 방법론까지, AI 프로덕트의 전 생애 주기를 관리하는 방법을 소개하고, Evidently 라이브러리를 활용해 데이터의 품질과 변화를 모니터링하는 방법을 학습한다. 6장에서는 생성형 인공지능의 핵심 원리와 금