1부. 해석 가능성 개요
1장. 소개
1.1 진단+ AI - AI 시스템 예제
1.2 머신러닝 시스템 유형
1.2.1 데이터 표현
1.2.2 지도 학습
1.2.3 비지도 학습
1.2.4 강화 학습
1.2.5 진단+ AI를 위한 머신러닝 시스템
1.3 진단+ AI 구축
1.4 진단+ AI의 문제점
1.4.1 데이터 누출
1.4.2 편향
1.4.3 규제 미준수
1.4.4 (콘셉트 드리프트
1.5 강건한 진단+ AI 시스템 구축
1.6 해석 가능성 대 설명 가능성
1.6.1 해석 기법 유형
1.7 이 책에서는 무엇을 배우나?
1.7.1 이 책을 읽는 동안 어떤 도구를 사용하게 되는가?
1.7.2 이 책을 읽기 전에 무엇을 알아야 하는가?
요약
2장. 화이트박스 모델
2.1 화이트박스 모델
2.2 진단+ - 당뇨병 진행
2.3 선형 회귀
2.3.1 선형 회귀 해석
2.3.2 선형 회귀의 한계
2.4 결정 트리
2.4.1 결정 트리 해석
2.4.2 결정 트리의 한계
2.5 일반화 가산 모델(GAM
2.5.1 회귀 스플라인
2.5.2 진단+ 당뇨병을 위한 GAM
2.5.3 GAM 해석
2.5.4 GAM 한계
2.6 앞으로 살펴볼 블랙박스 모델
요약
2부. 모델 처리 해석
3장. 모델 애그노스틱 기법: 글로벌 해석 가능성
3.1 고등학교 학생 성적 예측기
3.1.1 탐색적 데이터 분석
3.2 트리 앙상블
3.2.1 랜덤 포레스트 훈련
3.3 랜덤 포레스트 해석
3.4 모델 애그노스틱 기법: 글로벌 해석 가능성
3.4.1 부분 의존성 도표
3.4.2 특성 상호작용
요약
4장. 모델 애그노스틱 기법: 로컬 해석 가능성
4.1 진단+ AI: 유방암 진단
4.2 탐색적 데이터 분석
4.3 심층 신경망
4.3.1 데이터 준비
4.3.2 DNN 훈련 및 평가
4.4 DNN 해석
4.5 LIME
4.6 SHAP
4.7 앵커
요약
5장. 돌출 매핑
5.1 진
이 책에서 다루는 내용
AI 모델 해석 기법
편향, 데이터 누수, 개념 드리프트에 따른 오류에 대처하는 방법
공정성을 측정하고 편향을 완화하는 방법
GDPR을 준수하는 AI 시스템을 구축하는 방법
이 책의 대상 독자
모델의 동작 방식과 공정하고 편향 없는 모델의 구축 방법을 더 깊이 이해하고자 하는 데이터 과학자 및 엔지니어를 위한 책이다. 공정성을 보장하고 비즈니스 사용자와 브랜드를 보호하기 위해 AI 시스템의 근간을 이루는 모델을 이해하려는 설계자와 비즈니스 이해 관계자에게도 유용할 것이다.
이 책의 구성
이 책은 9개의 장과 4개의 부로 구성돼 있다.
1부에서는 해석 가능한 AI의 세계를 소개한다.
1장은 다양한 유형의 AI 시스템을 살펴보고 해석 가능성과 그 중요성을 정의한다. 화이트박스와 블랙박스 모델을 살펴보고 해석 가능한 AI 시스템을 구축하는 방법을 소개한다.
2장은 화이트박스 모델과 이를 해석하는 방법, 특히 선형 회귀, 의사 결정 트리, GAM(Generalized Additive Model, 일반화 가산 모델에 초점을 둔다.
2부에서는 블랙박스 모델에 초점을 맞추고 모델이 입력을 처리하고 최종 예측에 도달하는 방법을 소개한다.
3장은 트리 앙상블이라는 블랙박스 모델 클래스와 PDP(Partial Dependence Plot, 부분 의존성 도표 및 특성 상호작용 도표 등 범위가 글로벌하거나 모델의 유형에 상관없이 훈련 후에 적용할 수 있는 기법을 사용해 이를 해석하는 방법을 다룬다.
4장은 심층 신경망을 설명하고 LIME(Local Interpretable Model-agnostic Explanation, 로컬 해석 가능한 모델 애그노스틱 설명, SHAP(SHapley Additive exPlanations, 샤플리 첨가 설명, 앵커(anchor와 같이 범위가 로컬이면서 모델의 유형에 상관없이 훈련 후에 적용할 수 있는 기법을 사용해 이를 해석하는 방법을 다룬다.