이론편
CHAPTER 1 인공지능
1.1 인공지능이란
1.2 인공지능의 역사
1.2.1 1960년대 이전
1.2.2 1970년대에서 1980년대 초반
1.2.3 1980년대 중반에서 1990년대
1.2.4 2000년대 이후
1.3 인공지능의 연구 분야
1.3.1 요소 기술 분야
1.3.2 주요 응용 분야
1.4 인공지능의 최근동향
1.5 인공지능의 영향
1.6 연습 문제
CHAPTER 2 탐색과 최적화
2.1 상태 공간과 탐색
2.1.1 탐색 문제
2.1.2 상태 공간과 문제 해법
2.2 맹목적 탐색
2.2.1 깊이 우선 탐색
2.2.2 너비 우선 탐색
2.2.3 반복적 깊이심화 탐색
2.2.4 양방향 탐색
2.3 정보이용 탐색
2.3.1 휴리스틱
2.3.2 언덕 오르기 방법
2.3.3 최상 우선 탐색
2.3.4 빔 탐색
2.3.5 A* 알고리즘
2.4 게임 탐색
2.4.1 mini-max 게임 트리
2.4.2 가지치기
2.4.3 몬테카를로 트리 탐색
2.5 제약조건 만족 문제
2.5.1 백트랙킹 탐색 방법
2.5.2 제약조건 전파 방법
2.6 최적화
2.6.1 조합 최적화
2.6.2 유전 알고리즘
2.6.3 함수 최적화
2.6.4 제약조건 최적화 문제
2.6.5 최소제곱평균법
2.6.6 경사 하강법
2.7 연습 문제
CHAPTER 3 지식 표현과 추론
3.1 지식
3.2 규칙
3.3 프레임
3.4 논리
3.4.1 명제 논리
3.4.2 술어 논리
3.5 의
인공지능의 전통 기술에서 딥러닝까지
최근 인공지능은 일상어가 되어버렸다. 인공지능이 4차 산업혁명 시대의 핵심 기술이라고도 한다. 인공지능이 미래를 크게 바꿀 것이라고 한다. 인공지능 때문에 일자리가 사라지고 생존이 위협받을 수도 있다고 한다. 요즘은 비전공자가 말하는 인공지능 이야기를 더 자주 접하게 된다. 어떤 때는 공감하기 어렵고, 때로는 잘못된 이야기도 듣는다
이 책은 인공지능의 전통적인 기술에서 최근의 딥러닝까지 인공지능의 전문적인 내용을 소개한다. 학부생부터 심화된 학습을 하는 대학원생이나 연구자들도 참고할 수 있도록 전문적인 수준까지 다루고 있다.
이 책의 내용
이 책은 핵심 이론, 응용, 도구, 부록편으로 구성되어 있다. 이론편인 1장부터 6장까지는 인공지능 핵심 이론이라 할 수 있는 탐색과 최적화, 지식 표현과 추론, 기계학습, 딥러닝, 계획수립에 대해서 다룬다.
응용편인 7장부터 10장까지는 인공지능의 주요 응용분야라고 할 수 있는 데이터 마이닝, 자연어 처리, 컴퓨터 비전, 지능 로봇에 대해서 소개한다.
도구편인 11장부터 16장까지는 실제 실습해 볼 수 있는 도구들로써 규칙 기반 시스템 개발 도구인 Jess, 기계학습 및 데이터 마이닝 도구인 Weka, 딥러닝 프레임워크인 텐서플로우(TensorFlow, 텍스트 처리를 위한 파이썬 패키지, 컴퓨터 비전 라이브러리 OpenCV, 그리고 로봇 소프트웨어 개발프레임워크 ROS를 소개한다. 도구편은 직접 실습을 해 볼 수 있도록 도구 사용 방법뿐만 아니라 실제 동작하는 다수의 프로그램을 포함하고 있다. 부록에서는 이론 이해 및 수식 전개에서 필요한 기본적인 확률 이론과 선형대수학에 대해서 소개한다. 다루는 주제가 많아 한 학기 강의에서는 전체 내용을 다룰 수 없다. 학부 인공지능 강의, 대학원 딥러닝 강의 및 기계학습 강의를 위한 권장 주제를 뒤에 첨