도서상세보기

도서명 당신은 AI를 개발하게 된다, 개발자가 아니더라도
저자 얼리사 심프슨 로크워거,윌슨 팡
출판사 세이지
출판일 2022-03-31
정가 16,000원
ISBN 9791189797140
수량
프롤로그 ㅣ 불을 만지기 전 불을 다루는 법 배우기

1장 AI 개발과 편향의 덫
구글의 성 편향 번역
남성 이력서로 학습한 아마존 채용 AI의 결과
잘못된 머신러닝으로 억울하게 감옥에 가게 된다면
AI는 하나의 기술이 아닌 진화하는 기술의 집합
머신러닝, 학습과 추론 사이의 여러 단계들
딥러닝, 인간의 의사결정을 모방하다
“왜 아무도 제게 알려주지 았았죠?”
AI는 사업에 도움이 되는 만큼만 가치가 있다
16시간 만에 중단된 마이크로소프트의 신제품
실패는 피할 수 있다

2장 기존 사업에 AI를 적용할 때 벌어지는 일들
유서 깊은 패션 기업이 AI를 도입했을 때
월마트의 재고 정리 AI 도입 과정
마르케사의 AI 드레스 제작기
농업에 머신러닝이 가져온 경제성과 효율성
이베이의 AI, 크릴로프 개발기
크로스펑셔널팀을 구축하라
시작하기 전 성공을 명확히 정의하라

3장 골디락스 문제 선택의 중요성
오토데스크의 환상적인 골디락스 문제 설정
오토데스크의 골디락스 문제 해결 후 달라진 변화
미국 우정청의 골디락스 문제 선택
데이터가 많은 곳으로 가라
시중 제품을 활용하는 것도 좋은 방법이다
AI팀의 힘을 키우는 문제 설정
쉬운 문제로 시작해 ROI로 증명하라
성공하는 AI기업은 어떻게 개발을 시작하는가

4장 AI는 데이터로 완성된다
제대로 된 데이터가 없으면 반드시 실패한다
월마트의 데이터 주석 작업 4단계
오래 쓸 수 없는 데이터는 무의미하다
왜 빅테크 기업은 마르지 않는 데이터에 집착하는가
이 데이터는 어디에서 와서 어떻게 쓰이는가
좋은 것에 쓰레기가 섞이면 쓰레기가 나온다
“당신의 기침소리까지 녹음하고 있다”는 기사가 뜬다면
데이터 파이프라인 구축하기

5장 강력한 AI조직 구축하는 법
유능한 인재가 활약하는 조직 구축하기
고급 인력 제대로 활용하기
인센티브의 재구성
AI 조직 구성의 3가지 단계
인력이 부족할 때 채용 우선순위
소프트 스킬의 중요성, AI를 모르는 팀과 협
AI 프로젝트 성패를 좌우하는 첫 단추, ‘골디락스 문제’ 설정하기
데이터가 많고 빨리 해결할 수 있는 가장 작은 ‘골디락스 문제’를 찾아 ROI로 증명하라. 이렇게 입증된 성공은 조직의 신뢰와 인정을 이끌어내 AI 사업에 추진력을 얻고 강력한 리더십을 발휘할 수 있다. 너무 차갑지도 뜨겁지도 않은 딱 좋은 상태라는 개념의 ‘골디락스 문제’ 설정은 최소한의 비용으로 AI의 강력한 성과를 보여줄 수 있는 첫 단추다.
오토캐드나 3ds Max 등의 건축 설계 소프트웨어 서비스를 제공하는 기업 오토데스크는 구식 고객 서비스로 고객들의 불만이 자자했다. 평범한 문의사항을 처리하는 데 하루가 넘게 걸려 전문가 고객들은 업무시간에 손을 놓고 있어야 했다. 그래서 오토데스크가 수백 가지 고객 불만을 처리하기 위해 AI를 도입하기로 결정하고 압도적인 비중을 차지하는 단 하나의 문제를 해결하는 데 집중하기로 했다. 바로 비밀번호 재설정 요청이었다. “로그인이 안 돼요”, “비밀번호 재설정이 안 돼요”라는 문의 요청을 골라내는 일은 자연어 처리에 적합했고 사내에 방대한 데이터가 쌓여 있었다. 이 환상적인 골디락스 문제 설정으로 빠르게 AI 솔루션을 구축해 성공을 증명할 수 있었고, 이에 고무된 오토데스크는 조직 전체에 AI 투자를 대대적으로 늘려 AI 친화적인 기업으로 변신했다.(본문 79쪽

세계 기업들의 AI의 도입 과정과 편향 대처법
전통적인 기업에 AI가 가져온 혁신은 놀랍다. 미국의 대표적인 미디어 기업 뉴욕타임스는 ‘인쇄 매체의 죽음’이라 불리던 패러다임에서 악성 댓글 관리 등 사내 문제를 해결하기 위해 AI를 도입한 후 점차 영역을 넓혀나가며 디지털 테크놀로지 기업으로 진화해 유료 회원수도 700만 명에 달하는 등 종이신문에서 디지털 매체로 혁신하는 데 성공했다.(본문 173쪽 이 외에도 책에는 IBM과 협업해 AI 드레스를 만든 패션 브랜드 마르케사와 AI 도입으로 회생에 성공한 이베이의 이야기, AI로 혁신을 이끈 밀라노의 전통 패션 기업 사례, 재고