목차
CHAPTER 1 머신러닝
1.1 머신러닝과 딥러닝
1.2 머신러닝이란
1.3 머신러닝의 난제
1.4 과적합
1.5 과적합과 싸우기
1.6 머신러닝의 종류
1.7 분류와 회귀
1.7 요약
CHAPTER 2 신경망
2.1 서론
2.2 신경망의 노드
2.3 신경망의 계층 구조
2.4 신경망의 지도학습
2.5 단층 신경망의 학습: 델타 규칙
2.6 델타 규칙의 일반 형태
2.7 SGD, 배치, 미니 배치
2.8 예제: 델타 규칙
2.9 단층 신경망의 한계
2.10 요약
CHAPTER 3 다층 신경망의 학습
3.1 서론
3.2 역전파 알고리즘
3.3 예제
3.4 비용함수와 학습 규칙
3.5 예제
3.6 요약
CHAPTER 4 신경망과 분류
4.1 서론
4.2 이진 분류
4.3 다범주 분류
4.4 예제: 다범주 분류
4.5 요약
CHAPTER 5 딥러닝
5.1 서론
5.2 심층 신경망의 성능 개선
5.3 예제
5.4 요약
CHAPTER 6 컨벌루션 신경망
6.1 서론
6.2 컨브넷의 구조
6.3 컨벌루션 계층
6.4 풀링 계층
6.5 예제: MNIST
6.6 요약
출판사 서평
이론으로 익히고 예제로 이해하는 머신러닝, 인공 신경망, 딥러닝
이 책은 총 6개의 장으로 구성되어 있지만, 크게 보면 3개의 주제로 묶을 수 있습니다.
첫 번째 주제는 ‘머신러닝’입니다. 딥러닝은 머신러닝의 기반 위에 세워진 기술입니다. 딥러닝을 제대로 이해하려면 간단하게라도 머신러닝의 철학을 알고 있어야 합니다.
두 번째 주제는 ‘인공 신경망’입니다. 딥러닝은 신경망을 이용한 머신러닝 기법으로, 딥러닝과 신경망은 따로 떼어 놓을 수 없는 불가분의 관계입니다.
세 번째 주제는 이 책의 주제이기도 한 ‘딥러닝’입니다. 그...
이론으로 익히고 예제로 이해하는 머신러닝, 인공 신경망, 딥러닝
이 책은 총 6개의 장으로 구성되어 있지만, 크게 보면 3개의 주제로 묶을 수 있습니다.
첫 번째 주제는 ‘머신러닝’입니다. 딥러닝은 머신러닝의 기반 위에 세워진 기술입니다. 딥러닝을 제대로 이해하려면 간단하게라도 머신러닝의 철학을 알고 있어야 합니다.
두 번째 주제는 ‘인공 신경망’입니다. 딥러닝은 신경망을 이용한 머신러닝 기법으로, 딥러닝과 신경망은 따로 떼어 놓을 수 없는 불가분의 관계입니다.
세 번째 주제는 이 책의 주제이기도 한 ‘딥러닝’입니다. 그동안 딥러닝의 걸림돌이 되었던 요인을 소개하고, 딥러닝에서 어떻게 해결하는지 제시합니다. 또한 대표적인 딥러닝 기술인 컨벌루션 신경망의 기본 개념과 구조를 소개하고 예제까지 구현해봅니다.
“딥러닝은 우리 연구소 스터디 중 가장 인기 있는 주제입니다. 하지만 초보자와 전문가 사이에는 여전히 상당한 격차가 존재하는 것도 사실입니다. 이 책은 딥러닝을 대략적으로 이해한 초보자들이 더 깊게, 하지만 너무 힘들지 않게 한 단계 올라서는 데 좋은 길잡이가 되어줄 것입니다. 특히 컨벌루션 신경망의 설명은 압권입니다.”
김승일_모두의 연구소 소장
“현업에서 딥러닝 기술을 적용한 기기를 개발하다 보면, 딥러닝 라이브러리를 수정하거나 최적화해야 하는 경우가 많습니다. 이런 작업을 위해서는 딥러닝의 구현을