도서상세보기

도서명 데이터 분석을 위한 머신 러닝 입문
저자 하시모토 타이이치
출판사 길벗
출판일 2018-11-05
정가 22,000원
ISBN 9791160506013
수량
지은이의 말
옮긴이의 말
감수자의 말
이 책의 활용법
실습 후기

1장 인공지능과 머신 러닝
__1.1 인공지능이란?
____1.1.1 현재의 요괴 ‘인공지능’
__1.2 BI는 AI 꿈을 꾸는가?
____1.2.1 비즈니스를 뒷받침하는 AI와 머신 러닝 엔지니어
__1.3 지금의 인공지능=지능?
____1.3.1 인공지능이 데이터 분석을 하는 날
__1.4 마무리

2장 데이터 분석 처리를 위한 기반 기술
__2.1 하둡: 대규모 데이터를 처리하는 인프라
____2.1.1 하둡이란?
____2.1.2 맵리듀스 처리
__2.2 하이브: 하둡에서 더욱 쉽게 데이터를 처리
____2.2.1 하이브란?
__2.3 프레스토: 고속 데이터 처리
____2.3.1 프레스토란?
__2.4 스파크: 더 빠른 분산 처리 환경
____2.4.1 스파크란?
__2.5 하둡과 관련된 기타 미들웨어
____2.5.1 하둡 관련 기타 미들웨어
__2.6 다양한 하둡 디스트리뷰션
____2.6.1 하둡 디스트리뷰션이란?
__2.7 BI 도구: 처리한 데이터를 시각화
____2.7.1 BI 도구란?
____2.7.2 펜타호
____2.7.3 제플린
__2.8 마무리

3장 실시간으로 데이터를 분석한다: 데이터에서 현재를 알 수 있는 기술
__3.1 플루언티드
____3.1.1 데이터를 실시간으로 수집한다
__3.2 노리크라
____3.2.1 데이터를 실시간으로 집계한다
__3.3 사례: 트위터 데이터에서 사람 이름을 실시간으로 집계
____3.3.1 실시간으로 사람 이름을 집계해 보자
___
데이터를 분석해 현재를 알고, 머신 러닝을 이용해 미래를 예측한다!

데이터를 분석하자! 현재를 알 수 있다.


하둡을 중심으로 한 대규모 분산 데이터 처리 환경을 간단히 소개하면서 데이터를 분석하는 데 어떤 기술이 필요한지 알아본다. 또한, 데이터를 수집하는 플루언티드, 변환·저장·검색하는 노리크라와 엘라스틱서치, 시각화하고 분석하는 키바나를 소개하고, 직접 트위터 스트리밍 API에 연계해 실시간으로 데이터를 집계하는 시스템을 만들어본다.



머신 러닝 알고리즘과 딥러닝 이론을 배우자! 미래를 예측할 수 있다.

수집하고 저장하고 분석한 데이터로부터 미래를 예측하는 기술인 머신 러닝과 딥러닝을 소개한다. 머신 러닝 알고리즘(나이브 베이즈, 단순 퍼셉트론, 서포트 벡터 머신, 회귀 알고리즘, 클러스터링을 배우고, 파이썬으로 다음 데이터셋을 처리해본다.



· IRIS 데이터 붓꽃 네 종류의 계측 데이터로부터 품종을 예측해본다

· digits 데이터 손으로 쓴 숫자 이미지를 문자로 인식시켜 숫자를 맞춰 본다

· Boston 데이터 주택 가격을 예측해보고 정확도를 더 높이는 방법을 알아 본다



또한, 딥러닝 이론(다항 로지스틱 회귀, 다층 신경망, 합성곱 신경망, 재귀형 신경망은 머신 러닝과 어떤 차이가 있는지 알아보고, 텐서플로로 실행해본다.