프롤로그 “사람 데이터를 분석합니다!”
서문 왜 사람 데이터인가?
1부 인재경영, 4차 산업혁명을 만나다
1장 인재경영에 데이터사이언스 바람이 불다
1. 한국의 인재경영은 어떻게 발전해왔는가
공채제도 발전사 1단계: ‘관상’과 ‘역술’의 시대
공채제도 발전사 2단계: 심리검사의 시대
공채제도 발전사 3단계: 채용 인터뷰의 과학화
공채제도 발전사 4단계: 빅데이터와 인공지능의 등장
2장 인사부서에 등장한 심리학자, 통계학자, 데이터학자
1. 사람 데이터 분석가들이 왜 인사부서에 왔는가
조직의 리더십 개발이 실제로 유용한가
그 일을 누가 해야하지?
아이디어를 실천으로, 실천을 아이디어로!
2. 사람 데이터 분석의 세 가지 유형
첫 번째 유형: 분석 결과가 가존 직관이나 통념과 일치한다
두 번째 유형: 분석 결과가 기존 직관과 통념에서 벗어나 있다
세 번째 유형: 분석 결과가 기존의 직관과 통념을 뒤집는다
3. 인사 빅데이터를 분석하는 두 가지 접근법
가설은 반드시 필요한가
첫 번째 접근법: 모델 의존적 방식
두 번째 접근법: 데이터 적응적 방식
두 가지 접근법을 동시에 활용하자
4. 분석할 때 상황과 맥락을 함께 읽어야 한다
의미는 맥락에 따라 달라진다
맥락에 따라 반응이 달라진다
조직에 따라 주제와 가설은 다르다
3장 사람 데이터 분석가들은 무엇으로 사는가
1. 내가 아는 것과 당신이 알아야 할 것은 무엇인가
“나는 그럴 줄 알았다!”
통계적으로 유의하다는 것
상관과 인과의 차이를 이해해야 한다
고급통계, 기초통계, 차원 이동을 반복하다
2. 누군가를 설득한다는 것은 어렵다
“내게 블랙박스를 보여줘!”
투명성과 명확성이 중요하다
아웃라이어 사례로 반박하면 힘들다
3. 인공지능 시대에 사람의 몫은 어디까지일까
인격일까, 숫자일까
인공지능 면접관은 얼마나 일을 잘할까
인간과 인공지능
4차 산업혁명 시대 인재경영 어떻게 할 것인가
-한국 기업들은 과학적 인재경영을 위해 무엇을 준비해야 하는가
인재경영 과학자의 시대가 왔다!
지금 전세계 글로벌 기업들에서는 경험에 의존한 직관과 직감을 넘어 인재경영 과학화가 시도되고 있다. 과학적 근거를 가지고 우수한 인재를 채용하고 배치하고 육성하고 승진시키고 보상하기 위해 노력하고 있는 것이다. 특히 인사부서에 빅데이터, 머신러닝, 인공지능 기술이 물밀 듯이 들어오면서 큰 변화를 맞이하고 있다. 가장 앞선 대표적인 기업이 구글이다. 구글은 과학적인 인재경영을 촉발시킨 장본인이다. 구글 산소 프로젝트는 훌륭한 관리자의 특성을 데이터 분석 방법으로 연구했다. 특히 인사최고책임자 라즐로 복은 인적자원이라는 의미의 인사부서HR를 없애고 대신 ‘사람 운영people operation’이라는 이름의 부서를 만들었다. 이제 우리 기업들도 인재경영 데이터사이언스 시대를 준비해야 한다.
이 책의 저자는 리더십 심리학자이자 조직 인류학자이자 대기업 실무 인사 담당자로 있으면서 인재경영 과학화 분야에서 선구자격으로 좌충우돌하며 겪은 희로애락을 흥미로운 이야기들과 함께 풀어내고 있다. 아울러 채용, 육성, 평가, 승진 등 인재경영의 여러 분야에서 어떤 점들을 고민해볼 수 있는지도 사례와 함께 제시하고 있다.
어떻게 누가 인재인지를 알아보고 채용할 것인가
기업에서 가장 중요한 일은 인재 채용이다. 유능한 사람을 뽑아 여건을 마련해주면 모든 일이 저절로 잘되기 때문이다. 그런데 문제는 ‘누가 인재인지?’를 어떻게 알아보고 채용하느냐이다. 열 길 물속은 알 수 있어도 한 길 사람 속은 모르기 때문이다. 그러다 보니 오늘날 글로벌 기업이 되는 데 초석을 다진 삼성그룹 창업자 이병철 회장조차 초창기 시절 다소 미신 같아 보일 정도로 비과학적인 사주 관상을 동원해 인재를 뽑았다. 1957년부터 1994년까지 이어졌다.
그 후 40여 년이나 지난 1990년대 들어서야 비로소 심리검사인 인적성 검사를 시작됐다. 그러